Synthesis of (–)-conocarpan by two routes based on radical cyclization and establishment of its absolute configuration[†]

Derrick L. J. Clive* and Elia J. L. Stoffman

Received 1st February 2008, Accepted 25th February 2008 First published as an Advance Article on the web 1st April 2008 DOI: 10.1039/b801858h

where d us we when we we we we call the conditional of the conditio

Introduction

(+)-Cl c pl, y e Le ucuel L ue cl u L will,¹ le l^{2,3} L w e cl u L will,¹ le l^{2,3} L w e cl e ue le cl ucl Le pupe L e w e y u ce Le the L cl e e ce ey le l'1.1 utue Le pl uce wee e u cl cl c pl.³⁻⁶ Le ch p e e we e l c c e the Le p e y p , uc c y h qu

Le c'h pui pe e we e c c c e he Le p d y p , uc cy qu $e_{i}^{4f,g,7}$ yp , s^{a} c c s^{b} u $s^{c,d}$ p p ec e c y^{se} c pec u c y c ce c u e u e , i^{9} Le c c y ce y e c c w Le c y Le cp ew^{9} Lu L'h y ppe le ucu y pe, Le uc c c p cu yc e e e c c (2) L pe e e c c Le y c ce c c c p cu yc e e c c c p c.e

Le ucue (+)-ci c pi w e Le pec c pc y, Le Lucci Lu w le 2R,3R (ee 1) Le ci p Le Cou e ci c pi ce ew Le Cou e du le Ly le u L e e ul u p e Le ci c She ye e, Le ci Lu di per Le ci c que eu c. p c u e ly Le u $up^{10,11}$ w. Le e e e Ly le u Le Le cy ue p p e ly Si i eet al.¹² Le e lucci lu di

w Le Le Cleec duite Le chp d c e. L e p che who we y pp c duite Ly le u 1^{10} See chp d Le lee che c y^{13} pecc p c y^{4h} c e e w L(+)-cl c p Le l u e c t u c e que Le ee e cht e ly Le p e d w L he ew e, Le l u e c t u u u (-)-cl c p hu le ee e.

Results and discussion

e e file (+)-ci c p y Le c e^{14-17} L L le cce le ly u c cyc c uc Le Ly u effet ce c c c p c le e e e y ly l file c l ly le e() Le e c cyc $,^{18,19}$ lu Le pe el ce le Cy file c ce e p para-y el e le y c ulu file Le pep Le p c y c effe e cu l , SL pe y file c ep , w c p el y effet e up Le C(2) e e che y, el w we²⁰ c fip ul y para y el ul ud ^{22,23,25}

Scheme 1 = p ec | up; = e upc | $e \lfloor e \rfloor$

e.

Scheme 2 , 1, 2, 3 = p ec) up ; = e up c e e e.

Lete y c e Le ui é p cend p uc 15 L , we de I-Hul ede p ce³¹ Mie Lee Le у Ъe e c 16 equ e 1 u e e 17.) $e^{iH}w + (-c)_{2}p$) e^{iB} , $u + e^{-c}cyc$ • • 1^{32} (18 $\stackrel{4e}{\rightarrow}$ **⊅**e y -clu ele le 18, lu se с ee eec y V, e M 19) e p **i** (19 → **20**), cond conditions (condition of the condition of tî∿np e y, we pie pep e ul e ype Le up p ce Le C(3) he Ly . H we e, u by $CH_2S L_2t$ u p ce L he Ly, we 1 ee eec y. · L e pec **ь** у е 1

Scheme 3 Reagents and conditions: () **i** H_4 ; (l) *t*- **u** e_2SC , **i** H_4 ; 89% e w ep; (c) ee e , 68% via e; () **i** $_3$ **i** $_2$ (eec e ep ec **i** $e_2 - CH_2 S e_2t$ - **u u**), 66–74%; (e) **P**e – **i** pe **i** e; () **i** $_3$ **i** $_43$ -66% e w ep; () **i** $_4$ **b** $_5$ %; () e_4 (c) e_5 , e H, 88%; () e_3 **b** $_5$ %; () e_4 (c) e_5 , e H, 88%; () e_3 **b** $_5$ %; () e_4 (c) e_5 , e H, 88%; () e_3 **b** $_5$ %; () e_4 (c) e_5 , e H, 88%; () e_3 **b** $_5$ %; () e_5 (c) e_6 **c** $_5$, e_5 , e_5 , e_6 , e_7 ,

p) we ece e Mie) ep e ype 11 èllice e e y Leplie) (eete w). c cyc e ec *p-L*y ,²⁴ u yccL SL pe 22 w pepe e yl e e e_Lv y the cep 21 SL (-)-'py р e 23 (Scherne 4). I he Le eep e e centre 4e ^t c e p 1 1 (tray! ep e, I e e e L Lee e ue Le p e, Lu e weee Me Ly HIM 23 95 : 5. pec we ette ue) e u ' p c pu y c d c Mec ; e Lee e, l u Le el Le y Le Le p c pu y 98%) w he ue ty Le e te te te Le cì c pì (ee CL H KC 24^{33,34}) w e p uce 2 ew L Le pr e 25, which we'c u phy. The beech 1 ¶ e he 76% lych đ h у ь w unp 1 4 ep e pel ccu w **1** 4e 25 e we seperie necht wa d'hp i. e e u e³⁵) e **ì**; p e p e pell, pp e **)** c 1 à, u Ì ep epeel Le p¹u¹ c¹ 25 w p ece Ly y p Min ci 1. The phy y e ppe ecу leul yw ep ce ly e у 4у **4**3

1832 | Org. Biomol. Chem., 2008, 6, 1831–1842

This journal is © The Royal Society of Chemistry 2008

Le *E*- the we ecce e Le we-eul chip ul 29 w Li-p per y i e un the which chip the cy te e $E:Z^{(n)}$ ue (32). Li Le el ul et i e $(Z \rightarrow E)$ w u te eque, we Le ette c we eu le eecep e ut le e ec c_{P} el c ch p Ly. l L c e, e t el w LCS e ec e (31 \rightarrow 32 \rightarrow 33). e Le equ l e Le E/Z t e 31, u C $_{2}(LCT)_{2}^{37}$ l 34 w L E:Zca. 97 : 3 (Schere 6). e Le c p ec up cr cette Le e u Ly y ly $e^{38}(34 \rightarrow 35 \rightarrow$ Le e l e (1 $_{3}$ t t f h $^{39})$ Me, e el $33; 32 \rightarrow$ cend LeeulLy welyLy e poend L ne, ul Leec ep ceriel 36), 'ue ecle le w, Le ec ue e e p ue e 37. ee p ulel equ l eZ- ie we 4 ue Lep un p e LeE: Zс u Ì с y eec lely h eewseeseZ- hew 1 . cc 1 y, chip ut 37 re 1491M **37** w e e w L ene c y pue y ³⁷ **P**∿ie) c 48 4 (74% 🐂 Le 🏞 e 1 (M (H), e H, e). De u y

95% Let e c c p .40 L the w e the ty c. H IC u L e e 98%; $[a^{22}w -99.7$ (c'1.03, e H). Le Le pecto pp e L ep e (+)-c c p c L e Le Le c f u H e c le le le Le Le c f u e e c e e e e le Le Le Le Le Le Le Le c f u e e c e c c u e e e c le le w, Le e t e we e e e e c c u u e e v Le e (+)-c c p , L Lect p u we e e w c u y (-)-c c p , w L Le 2R, 3R l u e c t u m w ly ucue 1. H we e, e pe te p w l t eu we c t pe e e u p uc (eele w).

Lew 1 Let e y Le we ee pe Le ue L L e L p e pp u y c p e Le cis : trans we ee pe Le c cyc Lee ey Le we ee pe Le p e pp u y c p e Le cis : trans we ee the 5-exoc cyc $38 \rightarrow 39$.

per e per e 23b u e t c c (que u M H) w Le u p e 40⁴¹ (2 equ.) e 41 83% y e (e c e c) e e e e e p e). He y (100%) e t e w M ⁴² e u 2-t u e e e c e Le Le ef 38^{43,44} [65% 80% e c e e e t t e y e(19%) e e Le c cyc L w c u e Le u u w y t y w u t e u e t e t e e f Sec e e e trans u u e Ly t u 39 w e 69% y e e t e e(M , 300 H) Lec e p cis te

Proof of absolute stereochemistry

Sice u y Le c c i c p w e y e e y, u e Leet Le tuechtu L wity 1, w c ep e e y e, we ee e t L L LeSL pe y the cep we Lee pece c u e^{21,47} L Le tuechtu u y Le c c p u w ee L with 1. ewee uite the tipe Le e ue w L p Le ee c et c u c e SL pe y the cep

e period cirrin L Le yrre cep $(22 \rightarrow 23)$ w Lee pece c u e; c i equè y, i u (+)-c i c p i i u L e Le i u e e c Lei y L wi 52.

Conclusions

Le pe d wir w L ee cleic e (+)c c p eque, cu e e u y Le, which e p uc ey Lee, e p cee via e le litte y c y c, Lee ppe le e d the cpu y Le ec ue, which e e uch e C-l, we e whiep e Lee lie c c p we ee. Le wire 5exoc c ue ed e e cis/trans e c y, which ue y c pd y up, Le ec ue, le the e ec e.

Experimental

General methods

Le J ue e p c he ue ec y h Le pec d. l e per e wee e u e l e h plee (M_2), u e e Le c y. C d'i e equ e he e x.e. x.e. [a, ue e e 1 10⁻¹ e c 2^{2 -1}.

First route

Toluene-4-sulfonic acid 4-[(2S,3R)-3-hydroxymethyloxyranyl)]phenyl ester (23). C u Le 4¹ h ecu e e (0.5), c e >200 °C 1 0.3 24 L, we e e u 🕴 w e 10¹ 1 1 22 (728.4¹ , 2.390¹ 1)] OH₂C₂ (1.2¹ 1 pu 0.8¹ 1 e) w e pw e yy e. Let u e w e 2 L Let que c Le y que u M H (30% w/, 0.38 M) u e w L c. pry ree us e c e $(2.5 \times 35 \text{ c}^{-1})$, u 50-60% 1 | c-re e (ep e e u)) ref 6 : 3 : 11 | c-re e H, e 23 (712.4 , 93%) wr e : $h p 51-53 \circ C$; $H h (CDC_3, 500 H) \delta 1.74 (, J =)$ 5.1, 7.7 H, 1 H), 2.49 (, 3 H), 3.18 (, J = 2.3, 2.3, 3.6 H, 1 H), 3.83 (J = 3.6, 7.8, 12.6 H , 1 H), 3.93 (J = 2.0 H ,1 H), 4.06 (, J = 2.5, 4.9, 12.9 H , 1 H), 6.99 (pp e) p // ' y e, J = 8.7 H , 2 H), 7.21 (pp e) ' ' y e^{1} , J = 8.5 H , 2 H), 7.30 (pp e р ' ' y e^{1} , J = 8.3 H , 2 H), 7.71 (pp e р (CPC_3, CPC_3) р

pe Le Le e e (Le le e c e ep y c L Le c e p c c L) we e p ep e ly (R)- α^{2} ie LS^Mpe Spe Le L cyceepycL p ce™c $\begin{array}{c} (R) - \alpha^{\frac{1}{2}} + e + y - \alpha - \\ e + u + e \end{array}$ ep y $\begin{array}{cccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ (u y c 1 3 0 H_2C_2 . Le e e 1 y H we we eeep y c 1 1 1 1 yep e e 🖬 e c N Leep у с L The tac (tup ep e ut e he frech)) type H InC [C, p] \rightarrow H (150 × 4.6 M) 1 · 1 · 1 · ... $p^{1} \mid \mathbf{D} - \mathbf{W} (150 \times 4.6^{\text{M}}), 1:1 \text{ eCN}-w' \text{ e},$ $w 0.5^{+}$ h^{+} 1^{-1} , e ec $1 - 232^{+}$ h^{+} . e 1 - e = e p1 cen c thpe; e d i the 11.9thi i 14.3thi L we Led The c Le 94.7 : 5.3.

Toluene-4-sulfonic acid 4-[(1S,2R)-1-(4-Allyloxyphenoxy)-2,3dihydroxypropyllphenyl ester (25). I p y c 23 (>88% ee, 10.94, 34.15 fm) w e l e p e e **)** Le e (70 °C) u **)** O- y Ly qu**)** e (12.32 , 82.04 (1, 34) (1, 34 (1, 34 (1, 34 (1, 34 (1, 34) (1, 34 (1, 34 (1, 34 (1, 34 (1, 34) (1, 34 (1, 34 (1, 34) (1, 34 (1, 34) (1, 34) (1, 34 (1, 34) (1, 82.04 (1) (1, 34 (1), 54 (1), (ei eu)), e **25** (12.26, 76%) ye w L , ec e e **23** (1.09, 10%). **D 25** L : $[a^{22} + 46.77 (c 1.94, OH_2C_2);$ "H M (CDC 3, 400 H) δ 2.16 (L , 1 H), 2.46 (e pp) , 4 H), 3.79 (1, 2 H), 3.93 (, J = 5.4, (J = 1.6, 1.6, 1.6, 17.3 H, 1 H), 6.02 (J = 5.3, 5.3, J)10.6, 17.3 H, 1 H), 6.71–6.77 (1, 4 H), 7.00 (pp e р $' \, ' \, y \, e^{h}, J = 8.6 \, H , 2 \, H), 7.30 (pp e^{h})$ р ' ' y \mathfrak{E} ', $J = 8.1 \, \mathrm{FH}$, 2 \mathfrak{E}), 7.33 (pp \mathfrak{e} p ' ' y e^{-1} , J = 8.6 H , 2 H), 7.69 (pp e ' ' y **ℓ**, J = 8.3 H , 2 H); ¹³C ℕ (C**P**C₃, 100 [™])

Toluene-4-sulfonic acid 4-[(1*S*,2*S*)-3-(*tert*-butyldimethylsilany-loxy)-2-iodo-1-(1-methoxy-4-oxocyclohexa-2,5-dienyloxy)propyl]-phenyl ester (27).

(a) Toluene-4-sulfonic acid 4-[(1S,2S)-3-(e -butyldimethylsilanyloxy)-1-(4-hydroxyphenoxy)-2-iodopropyl]phenyl ester. (269.3 🐂 , 0.2330 🐂) w (**L**₃)₄ e e u = 26 (2.5371, 3.652 M) he = e (1.1353, 0.1353)w clue l p l 1 **/**. Le e ue e 'c-Le le (el eu l), e udle-4-u l c c 4- $[(1S,2S)-3-(tert-luy) + e_{y} + y + y)-1-(4-y)$ 2- p py proty e e (2.3587, 99%)yp.e y)u u le,

W p ce e p ' p y: $[a_{1}^{2} + 15.04 (c + 1.50, OHC_{3});$ 'FH N (CPC 3, 400 FH) δ 0.00 (, 3 FH), 0.04 (, 3 Å), 0.88 (, 9 Å), 2.43 (, 3 Å), 3.79 (, $J=4.5,\,10.6\,$ Å , 1 Å), 3.99 (, J = 8.2, 10.6 H , 1 H), 4.21 (, J = 4.3, 4.3, 8.3 H , 1 M), 5.05 (e pp) w L , J = 4.2 M , 2 M), 6.65–6.73 (, 4 M), 6.96 (pp e) p L ' ' y e , J = 8.6 M , ' ' y $e^{-1}, J = 8.6$ H, $' \, ' \, y \, e^{-1}, \, J = 8.5 \, H$ 2 M), 7.27 (pp e р ' ' y e^{1} , J = 8.7 H, 2 H), 7.29 (pp e р ' ' y e^{-1} , J = 8.4 fH, 2 °H), 7.65 (pp e р 2 H); ¹³C M (CPC₃, 100 H) δ -5.5 (q), -5.4 (q), 18.2 (), 21.7 (q), 25.8 (q), 40.9 (), 65.7 (), 77.9 (), 115.9 (), 117.5 (), 122.4 (), 127.8 (), 128.5 (), 129.7 (), 132.0 (), 138.8 (), 145.5 (), 149.1 (), 150.2 (), 151.7 (); W_{1} (OHC , c ; U^{-1}) 3489, 2952, 2927, 2856, 1597, 1507, 1373, 1198, 1176, 1092, 837; e c M *m*/*z* c c $C_{28}H_{35} \bowtie _{6}SS 677.08606, u 677.08627.$

(b) Toluene-4-sulfonic acid 4-[(1S,2S)-3-(e -butyldimethylsilanyloxy)-2-iodo-1-(1-methoxy-4-oxocyclohexa-2,5-dienyloxy)propyl]phenyl ester (27). $(\ c)_2$ (45.4 $\ c)_2$ u Le Le ud e-4- u C C 4-[(1S,2S)-3-(tert-Lu y He Ly Y y)-1-(4-Ly ypLe y)-2- p py -pLe y e e (C) ca. <math>6.5% anti He) (81.0 M, 0.124 (1.3 (1.3 (1.5)). S) w c) ue 30 (1.1) $1 \quad \text{Let} \quad | c (10^{1} \text{ (1.5)}) \text{ w} \quad \text{e} \cdot 1 \quad \text{Let} \quad \text{uew w Le}$ w L u e que u M HC $_{3}$ L e, e (S $_{4}$) e p e L L cL p p y Le e ue e c e (1.5 × 30 c), u 0-20%1 L c-Le e c] $_{3}$ M (ca. 3 p pe 100 M) (e e u), e 27 (77.3 , 91%) L] e , w_L c_L ppe e Le] e [14 H]]: [a^{22} +39.38 (c 1.49, OH₂C₂); ¹⁴H] (CDC₃, M 400 fH) δ 0.00 (, 3fH), 0.04 (, 3fH), 0.88 (, 9fH), 2.41 (, 3fH), 3.33 (, 3 Å), 3.52 (, J = 4.2, 11.0 Å, 1 Å), 3.79 (, J = 6.9, 11.0 H , 1 H), 3.99 (, J = 4.3, 5.1, 6.8 H , 1 H), 4.72 (, J =5.2 H, 1 H), 5.95 (, J = 2.1, 10.3 H, 1 H), 6.08 (, J = 2.1, 10.3 H, 1 H), 1 H), 1 H, 1 H), 1 H), 1 H H), 1 H H), 1 H H, 1 H), 1 H H H, 1 H H), 1 H H H, 1 H H, 1 H H), 1 H H H, 1 H H H H, 1 H H H, 1 H H, 1 H H, 1 H H H, 1 H H H, 1 H H H, 1 H H, 1 H H, 1 H H H, 1 H H, 1 H H, 1 H H H, 1 H H, 1 H H, 1 H H, 1 H H H, 1 H H, 1 H H, 1 H H 10.5 H , 1 H), 6.48 (, J = 3.2, 10.3 H , 1 H), 6.64 (, J =| / ′у **€**Ъ, 3.2, 10.4 H, 1 H), 6.90 (pp e) р | | ′ ′ у **€**Ъ, J = 8.7 H , 2 H), 7.18 (pp e) р / / J = 8.6 H , 2 H), 7.27 (pp d у **е́**Ъ, р ||′′y €¶, J = 8.5 H , 2 H), 7.64 (pp e) р J = 8.4 H , 2 H); ¹³C M (CPC ₃, 100 H) $\delta - 5.4$ (q), -5.2 (q), 18.2 (), 21.7 (q), 25.8 (q), 41.3 (), 51.5 (q), 65.5 (), 73.1 (), 93.6 (), 122.3 (), 128.2 (), 128.5 (), 129.0 (), 129.7 (), 129.8 (), 132.2 (), 139.7 (), 143.5 (), 144.2 (), 145.5 (), 149.3 (), 184.8 (); \mathbf{W}_1 (OH₂C₂ c ; \mathbf{E}^{-1}) 3055, 2953, 2930, 2896, 2857, 1688, 1674, 1639, 1599, 1501, 1471, 1378, 1199, 1177, 1094, 867, 839; e c m/z c c $C_{29}H_{37} M_{7}SS 707.09663, ut$ 707.09677. C c $C_{29}H_{37}$ ₇SS : C 50.87; H 5.45; S 4.68. u : C 50.78; H 5.55; S 4.87%.

Toluene-4-sulfonic acid 4-[(2R,3S,3aS,7aS)-3-(*tert*-butyldimethylsilanyloxymethyl) - 2,3,3a,4,5,7a - hexahydro - 7a - methoxy -5-oxobenzofuran-2-yl]phenyl ester (29) and Toluene-4-sulfonic acid 4-[(2R,3S,3aR,7aR)-3-(*tert*-butyldimethylsilanyloxymethyl)-2,3,3a,4,5,7a-hexahydro-7a-methoxy-5-oxobenzofuran-2-yl]phenyl ester (28). $u = u_3$ Si $H (0.04^{+}$ 16, 0.15⁺ 1)) u_3 Si $H (0.04^{+}$ 16, 0.15⁺ 1)) u_4 (6.0⁺ 1, 0.037⁺ 1)) u_6 (3⁺ 16) w e e 4 u_6 e) u_6 (80 °C) u) 27 (65.4⁺ 1, 0.0955⁺ 1)) u_6 e (1⁺ 16) (M_2 1 phe e). u_6 u e w

Menpe u.e. p Lè we с) c e e $(1.5 \times 30 \text{ cm})$, u = 8-20% $c_{---}e = e \text{ c}$ e = c = c 3 p pe 100% b), e = e e c e = c e = c y = w = c u = e = u c = w e = c e = c y = w = c u = e = u c = w e = c e = c y = w = ca ì <u>۴۹</u> ye w L 26.3%), Let eeu c w ue ulwle e e he [*i.e. cis* ul u] Le y e Le e cyce (ee le w) $(5.6^{\circ}, 10.5^{\circ})$, Le we e <u>u</u> c] w Le ee he (29) (23.6 , 45.3%). Le v e e p uc nui e 72%.

The e ecitu i weee the tym i me ue-Me hait i.

 $\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

p (' y e^{-1} , J = 8.7 H , 2 H), 7.22 (pp e^{-1}

Le weul $1 = 29 L : [a_{p}^{22} - 20.65 (c 5.88, \text{OHC}_{3});$ MIM $(C_6 \mathbf{P}_6, 400 \ \text{H}) 0.00 (, 3 \text{H}), 0.01 (, 3 \text{H}), 0.95 (,$ 9 H), 1.92 (, 3 H), 2.46 (, $J=11.7,\,15.9$ H , 1 H), 2.63 (, J = 4.9, 15.9 H , 1 H), 2.92–3.00 (, 2 H, u) leH I $H_1 \downarrow y \ 2D e \ pe \ Me \), \ 3.13 \ (, \ 3H), \ 3.45 \ (, \ J = 5.9H \ , \ 2H),$ 4.90(, J = 9.0 H, 1 H), 6.04(, J = 0.7, 10.5 H, 1 H),6.58 (, J = 10.3 H , 1 H), 6.76 (pp e / р 1 1 1 y e^{h} , J = 8.1 H, 2 H), 7.18 (pp e^{h} р 11// y e^{h} , J = 8.6 H , 2 H), 7.33 (pp e) р y e^{-1} , J = 8.6 H , 2 H), 7.80 (pp e^{-1} р y δ^{1} , J = 8.3 H, 2H); ¹³CN (C₆ \mathbf{P}_{6} , 125 H) δ -5.7 (q), -5.6 (q), 18.1 (), 21.1 (q), 25.8 (q), 36.3 (), 46.6 (), 49.3 (q), 50.9 (), 59.8 (), 83.8 (), 103.8 (), 122.8 (), 128.3 (), 128.8 (), 129.65 (), 129.71 (), 133.6 (), 140.7 (), 140.9 (), 144.8 (), 150.0 (), 196.6 (); \mathbf{W}_{3} (OHC $_{3}$ c ; \mathbf{E}^{-1}) 2953, 2929, 2886, 2857, 1720, 1691, 1502, 1376, 1198, 1178, 1154, 1093, 867, 838; e c $C_{29}H_{38}N$ ₇SS 581.19997, u 581.19977. m/zcc Le c he cis un he (ly et c l le ly h h he (ly et w h he he cp uc w **P**∿ie he (ly ehe wi $(HH_2)^{\dagger}$ the d Le Le e e trans w hep uc p uc. ₽•q_ սէ u-

Let e 1, 2, 4 p₁y Le e ue e c e (1.5 × 35 c⁻¹), u 1, 8% | c_{-L}e e, e 34 (1.3980, 95%) c e (c 1 ca. 3% Le Z he) w L H M e c L e ep e 33.

Toluene-4-sulfonic acid 4-[(2R,3S)-2,3-dihydro-3-iodomethyl-5-(1E)-1-propenylbenzofuran-2-yl]phenyl ester (36).

Toluene-4-sulfonic acid 4-[(2,3S)-2,3-dihydro-3-(a)(methanesulfonyloxy)methyl-5-(1)-1-propenylbenzofuran-2-yl]phenyl ester. eS $_2C$ (0.025 $\uparrow h$), 0.32 $\uparrow h$) w e pw e y y e e c e (0 °C) u 35 (120.0 (0.250 + 1.0)) (0.04 + 1.0) (0.29 (1.020 + 1.0)) OH_2C_2 (3 16). Let U be e (S 4). p Le d L c, pLy Le e ue e c e (1.5×30 c), u 20% | c-Le e, e ue e-4- u c c 4-[(2R,3S)-2,3-J = 1.7, 6.6 H , 3 H), 2.45 (, 3 H), 2.98 (, 3 H), 3.71 (, J =5.1, 5.1, 8.9 H , 1 H), 4.39 (, J = 8.4, 10.3 H , 1 H), 4.50 (, J = 5.0, 10.3 H , 1 H), 5.58 (, J = 5.2 H , 1 H), 6.08 (q, J = 6.6, 15.6 H , 1 H), 6.33 (, J = 1.6, 15.7 H , 1 H), 6.84 (, 8.2 H , 1 H), 6.97 (pp e) p J = 8.7 H, J = 8.7 H, 214), 7.18 (, 114), 7.20 (, J = 1.7, 8.314, 114), 7.29 (pp e) ' ' y $e^{(1)}, J = 8.8$ H , 2 H), 7.31 (pp e) р ' ' y e^{1} , J = 0.5, 8.1 H , 2H), 7.70 (pp e^{1} p

(b) Toluene-4-sulfonic acid 4-[(2, 3S)-2, 3-dihydro-3-iodomethyl-5-(1)-1-propenylbenzofuran-2-yl]phenyl ester (36).(177.8 , 1.186) w e e u pelp w e (0.1681 , 2.571) uel e-4- u cc <math>4-[(2R,3S)-2, 3- y -3-(1e + e u + y + y) + e + y -5-(1E)-1-p pel y e u -2-y ped y e e (c) 4% Zte) (120.1 , 0.2334) y e (0.26 h). Let u e w e u e e 1 , we c , Let e u u p Ce e (3 × 1.5 c). 1 p Let u e p y e e ue e c (1.5 × 30 c), u 5-8% | c-4e | e, e e 36.

p Ce e (5×1.5 ch). 1 p T Le e t p y Le e ue e c e (1.5×30 ch), u 5-8% 1 c le e, e e 36. e y Le e e e e uc l e u y e whethere e w L p we. L cue e w Lee e e uce u u $_3$ StH (ee e).

 $u (1 \times 5^{\dagger} \times 16), t e (1 \times 5^{\dagger} \times 16), e (S_4)$ e p e f L cL pLy Le e ue e c e $(2 \times 30 \text{ e}), u = 13\%1$ c L e e $(1 \times 5^{-11}), e = (-5^{-4})^{-1}$ c e $(2 \times 30 \text{ e}), u = 13\%1$ c Le e e $(-25^{-4})^{-1}$ c e $(-25^{-4})^{-1}$ e $(-25^{-4})^{-1}$ c e $(-25^{-4})^{-1}$ e $(-25^{-4})^{-1}$ c $(-25^{-4})^{-1}$ e $(\quad,J=1.4,\,6.6\,{\rm M}\,,\,3\,{\rm M}),\,2.47\,(\,\,,\,3\,{\rm M}),\,3.34\,(\,\,\,,J=9.7,\,9.7\,{\rm M}\,,$ 1 ° 1), 3.53 (, J = 4.0, 10.2 ° 1 , 1 ° 1), 3.54 (, J = 4.0, 4.0, 4.0 8.9^{H} , 1^{H}), $5.49(, J = 4.3^{\text{H}}, 1^{\text{H}})$, $6.10(, q, J = 6.6, 15.6^{\text{H}})$, 1 ° I), 6.36 (, J = 1.2, 15.8 ° I , 1 ° I), 6.85 (, J = 8.2 ° I , 1 ° I), ' ' y $e^{1}, J = 8.7 \text{ H}, 2 \text{ H}),$ 6.98 (pp e р 7.21 (, 1 H), 7.24 (, J = 8.3 H , 1 H), 7.32–7.36 (, 4 H), 7.73 (pp \hat{e} p $| | ' ' y \hat{e}$, J = 8.2 H, 2 H; ${}^{13}C$ **N** (CPC₃, 100 **I**⁴) δ 9.7 (), 18.6 (q), 22.0 (q), 53.4 (), 89.3 (), 110.2 (), 122.1 (), 122.8 (), 124.2 (), 127.0 (), 128.0 (), 128.4 (), 128.8 (), 130.1 (), 130.5 (), 132.2 (), 132.7 (), 140.3 (), 145.6 (), 149.6 (), 158.6 (); w_{1} (CPC $_{3}$ c ; e^{1} ; 13021, 2913, 2851, 1597, 1502, 1489, 1374, 1245, 1198, 1177, 1154, 1093, 966, 862, 551; e c m/z c c $C_{25}H_{23} \bowtie {}_{4}S$ 569.02540, u 569.02546.

Toluene-4-sulfonic acid 4-[(2R,3S)-2,3-dihydro-3-methyl-5-(1E)-1-propenylbenzofuran-2-yllphenyl ester (37). (7.9 N (7.9 N) 0.048 W) w e e u cue e 36 [Mey e (0.1201) une Le 0.233 ì u_3 Si H (0.09 N, 0.3 N)] L = e(3.6 N). Le e c e e w u Le L u L y w L N_2 Le Le e L e 80 °C. He w c ue 1 L Le Le u ew we c p Le e ¹u ew c. p.y. e e ue e 10% Kf – c e^{52} (1.5 × 30 c), u = 5-8% f \exists c-4 e e (e e u), e] e p (e7:3) ue = 37.4 ue ep le7:3 ue w e-ulece Let ec] , u] u_3 Si H (0.08 16) L e (3.6 16). CL 1 pLy Lecu e le u e py secuerte ute e (3.6 1). Ch in phy hechieve a chieve Le hech Le hey e). I hp e euc p ce u e, 1 3 Hh (1) w e pwelyy e ì Irff.

3.4 Mi, 3.4 Mi) w e pwelyye e $\mathbf{c} = (0^{\circ}\mathbf{C})$ $\mathbf{u} = \mathbf{36}$ \mathbf{b} $\mathbf{c} = via$ Lep ceuele w $(923.4^{+1}, 1.690^{+1})$))))) (10^{+1}). Le cel L w e p celul ec. e) w c) ue 3.5 L. e (0.5 16) w e, we ty que u M H (1 4 16) H y H₂ (1.5 16, 30%). Let u ew e \mathbb{N}): $[a_{\mathbb{P}}^{22} - 59.93 (c 2.24, \mathbb{O}H_2C_2); \mathbb{H}H\mathbb{N}$ ($\mathbb{C}DC_3, 400 \mathbb{H}$) δ 1.42 (, J = 6.9 °H , 3 °H), 1.86 (, J = 1.7, 6.6 °H , 3 °H), 2.45 (, 3 °FI), 3.34 (°, 1 °FI), 5.12 (, J = 8.4 °FI, 1 °FI), 6.09 (q, J = 6.7, 15.71 , 11), 6.36 (, J = 1.7, 15.71 , 11), 6.77 (, J = 8.81 , 1 °H), 6.99 (pp \dot{e} p U U' V \dot{e} J = 8.7 °H , 2 H), 7.12 (, 1 H), 7.12–7.13 (1, 1 H), 7.32 (pp e р J = 0.7, 7.9 H, J = 0.7, 7.9 H, 2 H), 7.33 (pp e) р ' ' y e^{1} , J = 8.4 H , 2 H), 7.72 (pp e p

122.6(), 123.3(), 126.4(), 127.2(), 128.5(), 129.8(), 130.6 (), 131.6 (), 131.8 (), 132.4 (), 140.0 (), 145.4 (), 149.3 (), 158.1 (); W_1 (C⁴I₂C₂ c ; e^{N_1-1}) 3021, 2962, 2928, 1598, 1503, 1486, 1375, 1243, 1199, 1177, 1154, 1094, 968, 868; e c 🎦 m/z c c $C_{25}H_{24}N_{4}S$ 443.12875, u 443.12864. w: Lec $C_2(LCN)_2$ Let uew e $48 \perp (M_2$ h plee), uew μ (10¹)) ^pee LuL p 2.1 p Le^p e $[3 \times 3 \& 1],$ 1_2 1 p Let e Lc. Le e ue e c e (1.5 × 35 c), u 8%1 d-1 Le Te, e 37 (0.2072 , 74% , 4e e) с e LeZ Me (MIM 400 PI). ee

4-[(2R,3R)-2,3-Dihydro-3-methyl-5-(1E)-1-propenylbenzofuran-2-yl]phenol [(+)-conocarpan] (1). № (^{FI}) (c⊾, 10% №, 868.9th, 3.779th M) w 7 e 🛉 lep ↑ e c y pu e 37 (197.0 ↑ , 0.4685 ↑ ↑)) u 🕨 80% e f4 (8^h1h),] w c]]ue e] 4.14e u) w Let ect e Let I, ue w Lw e (10⁺)h). Let ue w e ce w Ll₂ (3 × 10⁺)h), ly w ch e Le que u ye w ee p uc (16 C c), c, 30% l (------) c). Lect le ce cwee w Le w L e e (S 4). I p Le e L ch p y Le e ue e c e (1.5 × 25 Å), where (-----------)1 - 1 - 15% p y Le e ue e c e (1.5 × 25 e), u 1 - 15% c - Le e e ue e s c e (1.5 × 25 e), u 1 - 15%w, e, c y e : p 120–123 °C [.4a 133–135 °C; .4g 124–126 °C; $[a_{\bullet}^{22} - 99.7 (c \ 1.03, e \ M), \frac{4a}{2} [a_{\bullet}^{21} + 122 (c \ 1.03, e \ M)]$ y c i c p i) (c 1.03, e №); № М (CDC₃, e 500 FI) δ 1.40 (, J = 6.8 FI , 3 FI), 1.86 (, J = 1.6, 6.6 FI , 3 °H), 3.37-3.43 (°, 1 °H), 5.00 (, 1 °H), 5.08 (, J = 8.9 °H, 1 °H), 6.09 (q, J = 6.6, 15.6 H , 1 H), 6.37 (, J = 15.6 H , 1 H), 6.76 (, J = 8.1 H, 1 H), 6.83 (pp d) p (j v d),J = 8.5 H , 2 H), 7.12–7.14 (γ , 2 H), 7.30 (pp e p $I = (Y = 1, J = 8.5 \text{ H}, 2 \text{ H}); {}^{13}\text{CN} = (\text{CPC}_3, 125 \text{ H})$ δ 17.9 (q), 18.4 (q), 45.3 (), 92.7 (), 109.3 (), 115.5 (), 120.8 (), 123.1 (), 126.3 (), 127.9 (), 130.8 (), 131.3 (), 132.4 (), 132.9 (), 155.7 (), 158.3 (); w_{1} (CH₂C ₂ c , m_{1} c c pe; m_{1}^{-1}) 3395, 3022, 2962, 2928, 2882, 1614, 1517, 1487, 1240, 1202, 1171, 964, 831; e c m/z c c $C_{18}H_{18-2}$ 266.13068, ul 266.13042. ¹H IC y [C, ce D c ul $(0.46 \times 15.0 \text{ cm})$; 95:5 µep e^{-1} p p z; w e 1^{1} $(10.46 \times 15.0 \text{ cm})^{-1}$; 40 °C; 207 1th; ed 1 the 7.4 th 1 10.9 th e ec Ì we hechpul hee 98%.

Second route

Toluene-4-sulfonic acid 4-[(1S,2R)-1-[4-formyl-2,3-dihydroxy-2iodophenoxy)propyl]phenyl ester (41). ¹ p y c , 23b (e = 98.9 : 1.1) (1.8694 , 5.8350⁺) w e i i e p e $\mu e e (1 \mu , 70 °C) u + 4 \mu y$ le $\mu y e^{41} (2.6359 , 10.628 ~m)$ $\mu u e$ уl d 3que $u \, \mathbb{M} \, \mathbb{H} (1 , 5.8^{1} \mathbb{N}, 5.8^{1} \mathbb{N})$) $u \in (6^{1} \mathbb{N})$. 70° Cw c) ue 2.5μ . Let uew S Ì we c w c r ue 2.54.14e uew wec w c p ue que u H (1, 10 h).Le que u p_{L} ew e ce w L $_{2}$ Lec h ec e c weew ke w L le e (S $_{4}).$ p ke el k ch $p_{L}y$ kec e (2.5 × 35 c), u 50-80% c - 4 e e e ue <u>e</u> c))) (*ca.* 3 p pe 100¹)) (*el eu*), e 41 [2.1124 , 64%, 83%] e ec e e 23b (436.8) , w, e, c y e : $p 55-58 \circ C$; $[a^{22} - 39.52]$ 23%) (*c* 5.69, O⁴IC ₃); ¹⁴H M (C**P**C ₃, 400 ⁴H) δ 2.33 (1, 1, 1⁴H), 2.45 (, 3 Å), 2.75 (, , 1 Å), 3.82 (, J = 3.7, 11.5 Å, 1 Å), 3.94 (, J = 5.2, 11.5 H , 1 H), 4.03–4.06 (, 1 H), 5.40 (, J =5.8 H , 1 H), 6.64 (, J = 8.6 H , 1 H), 7.03 (pp e р ' ' y δ , J = 8.7 H, 2 H), 7.30 (pp ϵ p ' ' y e^{1} , J = 0.6, 8.6 H , 2 H), 7.33 (pp e^{1} ' ' y \mathcal{E} ', J = 8.6 H , 2H), 7.60 (, J = 2.0, 8.6 H , 1H), 7.69 (pp e p $(' y e^{*}), J = 8.4$ (H , 2) (H), 8.27 $(J = 2.0 \text{ H}, 1 \text{ H}), 9.76 (J \text{ H}); {}^{13}\text{CN}$ (CPC 3, 100 M) δ 21.7 (q), 62.3 (), 74.4 () 81.4 (), 87.4 (), 113.3 (), 122.9 (), 128.2 (), 128.3 (), 129.8 (), 131.7 (), 131.8 (), 132.3 (), 135.2 (), 140.9 (), 145.6 (), 149.6 (), 160.1 (), 189.2 (); W_{1} (CPC $_{3}$ c ; ℓ^{-1}) 3417, 3067, 2927, 2883, 2731, 1694, 1587, 1502, 1480, 1371, 1255, 1198, 1177, 1155, 1093, 1038, 869; e c m/z $C_{23}H_{21} \bowtie {}_{7}S 590.99450, u 590.99454.$ c c

Toluene-4-sulfonic acid 4-[(R)-1-(4-formyl-2-iodophenoxy)allyl]phenyl ester (38). \mathbb{N} (91.7 \mathbb{N} , 0.612 \mathbb{N}) w e u 42 (29.5th, 0.0408th) 2-4 u 1 e Le ueweue 41, 12e e wepe 12ee uewp (2^t), Let uew eue we c . 1 Le **e** c e c we e w Le w L e, e (S $_4$) e p e L CL pLy Le e ue e c e (0.5 × 20 c), u 30% | c -L e e, e 38 (15.7), 71%) $[a_{1}^{22} - 8.88 (c \, 13.43, \, \text{CH}_2\text{C}_2); \, \text{HM}$ (C**₽**C₃, 500 FI $\delta 2.48(, 3FI), 5.36(, J = 0.8, 10.4FI, 1FI), 5.50(,)$ J = 0.8, 17.1 °H , 1 °H), 5.83 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H), 6.05 (, J = 5.9 °H , 1 °H) 5.9, 10.4, 17.0 H, 1 H), 6.88 (J = 8.5 H, 1 H), 7.06 (pp e) ' ' y e^{4} , J = 8.6 H , 2 H), 7.33 (pp e р ' ' y e^{1} , J = 8.5 H , 2 H), 7.45 (pp e^{1} ' ' y \mathfrak{E} , $J = 8.3 \, \mathrm{FH}$, 2 \mathfrak{E}), 7.76 (, $J = 2.0, 8.5 \, \mathrm{FH}$, 1 H), 8.34 (, J = 1.9 H , 1 H), 9.83 (, 1 H); ¹³C M (C**₽**C₃, 125 **H**) δ 21.7 (q), 81.4 (), 87.8 (), 113.6 (), 117.8 (), 122.8 (), 127.8 (), 128.4 (), 129.8 (), 131.5 (), 131.6 (), 132.4 (), 136.2 (), 137.6 (), 141.2 (), 145.5 (), 149.3 (), 160.6 (), 189.2 (); \mathbf{W}_{1} (CH₂C $_{2}$ c ; \mathbf{C}_{1}^{-1}) 3065, 2922, 2834, 2727, 1695, 1587, 1501, 1479, 1371, 1252, 1197, 1177, 1154, 1093, 866; e c 🎮 $C_{23}H_{19} \mathbb{N}_{5}S 556.98902, ut 556.98890.$ m/z c c c c $C_{23}H_{19}$ ₅S: C 51.69; H 3.58; S 6.00. **i u** : C 51.41; ₱H 3.65; S 5.92%.

e c ew L Le Le e per le wepe e ney e(2.1255, 2.94 n), Leye w 65% [80%] ec e e **38** (398.1¹, 19%).

Toluene-4-sulfonic acid 4-[(2S,3R)-2,3-dihydro-5-formyl-3methylbenzofuran-2-yl]phenyl ester (39). u₃Siff (0.62^{+}) (1.23^{+}) (1. $(18^{n})w = e 4 (y) e p (y) e 4 (e + e)$ 'e $(80 \,^{\circ}\text{C})$ u $(10, 4^{1}\text{m})$, (1.704^{1}m)) (1.8^{1}m) $(M_2 + p_4 e e)$. I e Le Le Le Le u we ke e u Le 2 L Le we c l p Le L c pLy Le u e KI - c e (, 3 H), 3.31–3.38 (, 1 H), 5.19 (, J = 8.4 H , 1 H), 6.88 (, $J = 8.1 \, \text{FH}$, 1 FH), 6.96 (pp \dot{e} p) (' y \dot{e} y, J = 8.7 H , 2 H), 7.24–7.27 (, 4 H), 7.64–7.67 (, 4 H), 9.80 (, 1 ^fH); ¹³C \bowtie (CPC 3, 100 ^fH) (Le pec u w \bowtie) ***** c ***** pu e) δ 18.3 (q), 21.7 (q), 44.8 (), 92.7 (), 109.8 (), 122.8 (), 124.7 (), 127.1 () 128.5 (), 129.8 (), 131.0 (), 132.4 (), 133.1 (), 133.4 (), 138.9 (), 145.5 (), 149.6 (), 164.3 (), 190.5 (); W_1 (OHC 3 c ; U_1^{-1}) 2964, 2928, 1690, 1605, 1504, 1483, 1373, 1247, 1198, 1177, 1154, 1093, 867; e c 🍾 $C_{23}H_{20}$ ₅S 431.09237, u 431.09242.

Toluene-4-sulfonic acid 4-[(2R,3S)-2,3-dihydro-(3-methyl-5-(1E)-1-propenylbenzofuran-2-yl)phenyl ester (E-43) and toluene-4sulfonic acid 4-[(2R,3S)-2,3-dihydro-3-methyl-5-(1Z)-1-propenylbenzofuran-2-yl]phenyl ester (Z-43).

m/zc c

(a) Use of -BuOK. t- u K (33.0 , 0.294) w e e u pel L_3 | + - (129.6 , 0.3098)) L_2 (2), Let u ew e 0.5 L u **39** (54.2) , 0.133) L_2 (1) w e ty y e. Let uew e 15 1 Let 2 (5 1) w e, her uew whe weew hwe here (S_4) . I p here dpLy Lee ue e c e $(1.5 \times 30 e^{-1})$, Ψ¶. u = 5-10% | c - e = 1e(e u = 1), e = 43(33.9%), e = 3 (33.9%), e = 1 e =. le l Le ychie Ly pel 62%) ye w 4 pec u^{n} , we $u^{n} \in \overline{E^{n}}$: Z 1 Le MAN le 1 : 3;e el ce, pec c epi e р e ep e Le ne L e 37 (*i.e.* ∟e 97 : 3 u e chpul).

(b) Use of BuLi. un (1.6 + e + e, 0.06 + h, 0.096 + h)**h** + we elce (0°C) upell 4 (39.5th, 0.0944th)) i fiff (2th). S i w ci ue 15^t 39 (35.7^t , 0.0796^t)) IFH (1.3^t) pu 0.3 le) w e pwelyyle. S w c) ue 2L Let uew Let que che ty u e que un FLC $_3(0.5116)$, p le te weet w e (5116) l $_2$ (10116). Let ce cw e (S_4) e p e. L L ch phy Let ue 4) r e p e . 1 2 ch 1 p y 2 e e ue $c e <math>(0.5 \times 30 e^{-1}), u = 20\%1 + c - 4 e^{-1} e^{-1} e^{-1}$ e *ca.* 1% $_{3}$ \aleph , e **43** (23.2 \aleph , 69%) ye w , w c w 🔨 ue ZÌ E Me.

Toluene-4-sulfonic acid 4-[(2R,3S)-2,3-dihydro-3-methyl-5-(1E)- $\begin{array}{c} C_2(1 \text{ CN})_2\\ u & 43 \end{array}$ 1-propenylbenzofuran-2-yllphenyl ester (37). (9.4 • , 0.025 •) w e e

Isomerization with 10-day reaction time. (5.3 h, 0.0138 h) w e e (36.0 \ref{a} , 0.0856 \ref{a})) \ref{a} OH_2C_2 (2 \ref{a}),)) w (30.0 + , 0.000 y. Le u w fee $(1 \times 1 \text{ C})$, u OH_2C_2 fe. ^u 'n 'n 'p Le el L cL pLy Le e ue e c e $(0.5 \times 30 \text{ c}^{-1})$, u 13% | c-Le e c de l $_{3}$ (ca. 3 p pe 100 fb), e 37 (30.5 f ,85%) c e w L w 4 el c Leepele Let Le Z le cu le ecce Le " pec u e, Le MAN e cep L pec u (400 H).

4-[(2*R*,3*R*)-2,3-dihydro-3-methyl-5-(1*E*)-1-propenylbenzofuran-2-yllphenol [(+)-conocarpan] (1). De u y w e ty the field end e c te that u e: $[a_{+}-46.5(c\,0.28, c\,0.28, c\,0.28$

Proof of absolute configuration

Toluene-4-sulfonic acid 4-[(S)-1-hydroxyallyl]phenyl ester (45). (2.42, 16.1) w e e u (44)p uc h p e u e pe h e , ca. 1.6 h h) f <math>f e(8 h). Le e e w u e w L = 0 , Le u e w e u e 12 L, Le we c Le uew u e v 1 c (10 N), w Le w L u e que u $2S_{2-3}$ (8) ue w L ¶ ₃N, e 45 (279.8 № , 57% e 2 ep 🕅 Le Ly у ep e) c e : $[a_{p}^{22} + 4.63 (c 0.57, \text{OHC}_{3}); \text{HMM}]$ $(C_6 \mathbf{P}_6, 300 \text{ ff}) \delta 1.10 (, J = 3.7 \text{ ff}, 1 \text{ ff}), 1.74 (, 3 \text{ ff}), 4.62 - 3.7 \text{ ff}$ 4.65 ($^{\circ}$, 1 H), 4.86 ($^{\circ}$, J = 1.5, 10.3 H, 1 H), 5.03 ($^{\circ}$, J =1.5, 17.1 H , 1 H), 5.64 (, J = 5.9, 10.3, 17.1 H , 1 H), 6.57 (pp a) p || ' ' y \mathcal{E} , J = 8.3 H , 2 H), 6.92–6.98 (1 , 4)(1), 7.63 (pp \hat{e} p 1 / 7 y \hat{e}), J = 8.3)(1 , J = 8.3)(2 №); ¹³C № (C₆ $𝒫_6$, 100 №) (w) c) c) d 21.2 (q), 74.4 (), 114.7 (), 122.6 (), 128.7 (), 129.8 (), 133.4 (), 140.5 (), 142.3 (), 144.9 (), 149.5 (); W_1 (OHC $_3$ c ; U^{-1}) 3533, 3400, 3068, 2981, 2924, 2872, 1597, 1500, 1402, 1371, 1197, 1175, 1154, 1093, 867; e c m/z c c $C_{16}H_{16}M_{4}S$ 327.06615, u 327.06657.

Toluene-4-sulfonic acid 4-[(S)-1-(tert-butyldimethylsilanyloxy)propyl]phenyl ester (47). -2_{2} (5% w/w, 9.7 h, e : $[a_{\bullet}^{22} - 26.43 (c 3.03, \text{OHC}_3); \text{HM} \land (\text{CPC}_3, 400)$ fH) δ 0.00 (, 3 fH), 0.18 (, 3 fH), 1.00 (, J = 7.2 fH , 3 fH), 1.03 (, 9 H), 1.72–1.88 (N, 2 H), 2.61 (, 3 H), 4.70 (pp e) $, J = 5.5 \,\text{H}$, 1 H), 7.08 (pp \hat{e} p $1 \,\text{J}'$ 'y \hat{e} '', J = 8.6 H , 2 H), 7.36 (pp e) p ' y e, J = 8.7 H , 2 H), 7.45 (pp e) p ' y e, J = 8.6 °H , 2°H), 7.84 (pp è p / / / y è , J = $(CPC_3, 100 \text{ ff}) \delta - 5.0 \text{ (q)}, -4.7 \text{ (q)},$ 8.3 H , 2H); ¹³CN 9.8 (q), 18.2 (), 21.7 (q), 25.8 (q), 33.5 (), 75.5 (), 121.9 (), 127.0 (), 128.5 (), 129.6 (), 132.3 (), 144.7 (), 145.2 (), 148.3 (); W_{1} (OHC ₃ c ; U^{-1}) 3034, 2957, 2929, 2857, 1598, 1501, 1472, 1463, 1378, 1257, 1198, 1175, 1155, 1094, 1060, 1014; e c 🎦 m/z c c $C_{22}H_{32}N_{4}SS$ 443.16828, u^{2} 443.16826.

4-[(S)-1-(*tert*-Butyldimethylsilanyloxy)propyl]phenol (48). M (H) (815.0 , 10% M, 3.543 M) w e e, c u y u 47 (316.4 , 0.7444 M) 80% e H (5.4 M). Le w u e w I w c u w c u 45 e ce, c e u . Le u w ke ec e c c e u . Le u w ke c p y uffe c p p p e u e u (KH₂ 4-M H, pH 7, 8 M) I 2 (8 M). S u e que u c c (2 M) w Le e Le p c' u e w I e e e e c t l e ce c we w L e w I e e e c c e (1.5 × 25 c), u 0-20% I c-Le e (e u), e 48 c e (119.3 M, 60%) e ce e 47 (102.3 M, 32%). Le 48 L : $[a^{12} - 19.32 (c 1.41, OHC_3);$ H M (C₆ 6, 400 H) (p.e c H) t e e) δ -0.09 (, 3 H), 0.05 (, 3 H), 0.87 (, J = 6.7 H, 3 H), 1.06 (, 9 H), 1.66-1.88 (M, 2H), 4.54 (, J = 5.5, 7.1 H, 1 H), 6.62 (pp e) p I I ' ' y e', J = 0.6, 8.6 H, 2 H); ¹³C M (C₆ 6, 100 H) δ -4.8 (q), -4.4 (q), 10.3 (q), 18.4 (), 26.1 (q), 34.1 (), 76.5 (), 115.1 (), 127.4 (), 137.7 (), 155.4 ();

(q), 34.1 (), 76.5 (), 115.1 (), 127.4 (), 137.7 (), 155.4 (); w, (CHC $_3$ c ; $(1)^{-1}$) 3349, 3024, 2958, 2930, 2858, 1614, 1600, 1514, 1472, 1463, 1361, 1252, 1059, 836; e c m/z c c C $_{13}H_{26}M_{-2}$ S 289.15943, u 289.15935.

1840 | Org. Biomol. Chem., 2008, 6, 1831–1842

13% $| | c_{-4}e | e c | 1 | c_{-4}e | e c | c_{-4}e | e c | c_{-4}e | c_{-$ OFIC 3); IFI \bowtie (C₆ \mathbf{P}_6 , 400 IFI) δ 0.00 (, 3 IFI), 0.18 (3 IFI), 0.95 (, $J=7.4\,\mathrm{H}$, 3 H), 1.12 (, 9 H), 1.57–1.77 (), 2 H), 4.54 (J = 5.1, 6.9 fH, 1 fH), 7.04 (pp e) p / (J = 8.7 fH, 2 fH), 7.18 (pp e) p / (J = 8.7 fH, 2 fH), 7.18 (pp e) p / (J = 9.7 fH)y $\mathfrak{E}^{\mathbf{N}}$, $J = 8.7 \, \mathfrak{K}$, 2 \mathfrak{K} , 2 \mathfrak{K} , 7.18 (pp $\mathfrak{e}^{\mathbf{A}}$ p (' ' ' y $\mathfrak{E}^{\mathbf{N}}$, $J = 0.5, 8.9 \, \mathfrak{K}$, 2 \mathfrak{K}); ¹³C \mathfrak{M} (C₆ \mathbf{D}_{6} , 100 \mathfrak{K}) δ -5.0 (q), -4.7 (q), 9.7 (q), 18.3 (), 25.9 (q), 33.6 (), 75.4 (), 119.3 (, O_{3}^{r} qu e , J = 318.6 ⁴ H), 121.0 (), 127.7 (), 146.1 (), 148.6 (); w_1 (OHC $_3$ c ; U^{-1}) 2959, 2932, 2859, 1500, 1427, 1251, 1214, 1143, 890, 861, 837; e c M *m/z* c c $C_{16}H_{25}I_{3}M_{4}SS$ 421.10872, ui 421.10906.

(S)-tert-Butyldimethyl(1-phenylpropoxy)silane (50). /C $(10\% \text{ w/w}, 60.8^{+}\text{n}, 0.0571^{+}\text{n}) \text{ w e u}$ 49 $(99.0^{+}\text{n}, 0.248^{+}\text{n})$ 1 $_{3}^{+}\text{(}0.11^{+}\text{n}\text{h}, 0.79^{+}\text{n})$ 1 u Ì 49 (99.01, 0.24811) + 1 $_{31}$ (0.11 in, 0.75 in) i 1 c (5 h). Le et uew e e ly equel y e cu Le (Lue cull) Le i H2, Le p ce ue le epe e wcet e Ly et e l w Le ci ece Le w ci ue 3 L. Le Le e e e u uew f ee L u L p (0.5 × 1.0 c) c e, u l | c e p = 20 (62 c) + 100% ve w = 102 c 22 = 32 21Le e $\mathbf{6}$ e $\mathbf{50}$ (62.6 $\mathbf{5}$, 100%) ye w $\mathbf{1}$: $[a_{\mathbf{5}}^{22} - 32.21]$ (c 0.66, OHC 3); HH \mathbf{N} (C₆ \mathbf{D}_{6} , 400 H) δ -0.10 (, 3 H), 0.04 (, 3 Å), 0.87 (, J=7.3 Å , 3 Å), 0.97 (, 9 Å), 1.58–1.79 Å, 2 H), 4.51 (, J = 5.2, 7.0 H , 1 H), 7.07 (, J = 1.3, 6.7 H , 1 H), 7.16–7.19 (1, 2 H), 7.26–7.28 (1, 2 H); ¹³C N $(C_6 \mathbf{P}_6,$ 100 ⁴H) δ -4.8 (q), -4.5 (q), 10.2 (q), 18.4 (), 26.1 (q), 34.0 $(), 76.7(), 126.2(), 127.2(), 128.3(), 145.8(); H_{1}$ (OHC ₃) c ; **C**⁻¹) 3065, 3028, 2958, 2930, 2858, 1493, 1472, 1463, 1453, 1361, 1257, 1104, 1086, 1058, 1013, 860, 837, 775, 699; e c m/z c c $C_{15}H_{26}N$ S 273.16451, u 273.16448.

Acknowledgements

e 1¹ 4^e M u Scèlce 1¹ 11 1ee 1 ee c₁ Cuic Cl Mic upp.

References

References

- (a) he yc) c p): fe, , , , l. fe, , e S.C. ue, *Planta Medica*, 2001, **67**, 873–875; (b) . . . e, 5 (a) lie

- (c 0.025, e) ep e). 7 Le e e i ce L p pe y ci L leed e i L e i e ew i ci L leed ci L e. L e. L p L, . C. L , M. Dw e , M. Tew i S. S. e i , *Current Med. Chem.*,

- Trans. 1, 2000, 453-461.
- 11
 ece
 pc
 e_{c} pc
 e_{c} e_{c} </
- Tetrahedron, 1973, 29, 909–912.

- Commun., 2007, 2151–2153.

- Asymmetric Synthesis, e...
 1, c e c c e, f, 1985, ...

 1985, ...
 5, pp. 247–308, e pec
 y pp. 287–288.

 21
 K
 I
 S.
 , Org. React., 1996, 48, 1–299.

 22
 e c ff
 y e e fpe
 S. pe ep
 y e e

 e
 e w L
 para
 y e u
 u
 u

 ue
)
 Let e e e , U
 i e c f
 pe pe
 e

 e
 pe
 J
 Let e e e , U
 i e c f
 pe pe
 e

 ue
)
 Let e e e , U
 i e c f
 pe pe
 e
 e
 pe pe
 e
 e
 pe pi e
 e
 pe pi e
 e
 pe pi e
 i e c f
 pe pi e
 e
 pe j J. Am.
 Chem Soc 1991 113 106–113
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j
 j</t Chem. Soc., 1991, 113, 106–113.
- 23 Let we e Let c y c ep (ee e ce 24) we Let e e y e, y, e c w 2(e e t u $e_2S)$. 24 (a) ..., KH , ..., Kut e, S. K. K. M. Tut e K. S. pe, J. Am. Chem. Soc., 1987, 109, 5765–5780; (b) we check e L u Lee (-)- p py ew ee
- Lett., 2001, 42, 8201-8205.

- 26 D. L. . C e, S. . I e che I D. L u, J. Org. Chem., 2004, 69, 3282-3293.
- 27 (a) e e e e via y y : cf: K. . C. J. Chem. Soc., Chem. Commun., 1990, 1018-1019; (b) . uw, , . K N. C. u , *Tetrahedron Lett.*, 2004, **45**, 7355–7358.
- 28 Cf.: H. Y Y Y, . K Y K. , Chem. Pharm. Bull., 1987, 35, 3603-3608.
- 29 I. H. Ly Y. J. Le, H. Jue, K. J. Jee, S. u J. N. *Chem. Pharm. Bull.*, 1985, 33, 634–641. 30 I. H. Ly Y. H. Jue, K. J. Jee, *J. Chem. Soc., Perkin Trans. I*, 1984, 1725–1732. 31 D. H. J. C. C. Le we, *Tetrahedron*, 1985, 41, 3901–3924.
- 41, 3901-3924.
- 32 Cf.: **f**. **h**. K y-K c, **h** quey **h**. **e** u, Chem.–Eur. J., 2003, 9, 1566–1577. 33 K. C. hea. . S. J., . H. hee, K. H. C. ut., . . . K. de d. d

- 35 N. C. Inca. S. I, T1. Ince, N. -1. C. UI, J. I. K. effect of D. J. C. Bioorg. Med. Chem., 2003, 11, 3649–3658.
 34 pelle e ep e w. p. effective with end of the effective of 2358.
- L Me Ì ▶. I. C e, J. Chem. Soc., Chem. Commun., 36 (a) .
- 37 .⊿u, . . 4629.

- 42, 3572-3587.
- 42 2. Hu), K. C. Scheel S. . ele, J. Org. Chem., 1991, 56, 3869-3882.
- 43 Cf.: C. Shu M. . I. H. w., Angew. Chem., Int. Ed., 2004, 43, 4794-4797.
- 44 Cf.: I. I. pe, J. Ju J. I. H. w, J. Am. Chem. Soc., 2003, 125, 3426-3427.
- 45 u petri y c⁺ u c i (eed ce 16) we e d y qu e pecto i ue ed pe y Le c (-)-ci c p ; u te e petrid ue e d L put c i. ep e pecto i e: eed ce 4a: $[a^{21}_{21} + 122(d \cdot 1.03, e^{-1}H), e^{-120}_{22} + 64(e^{-0}A^2)]$ e e e c 4c: [a +128 (c 0.6, e H), e e e c 4e: [a 20 +64 (c 0.42, e H), e e e ce 4l: $[a^{25} + 122.5 (c 0.025, \text{ CHC}_3), e e e ce <math>5a$: $[a^{21} - 108.26 (c 0.025, e + 122.5 (c - 10.025), e + 122.5 (c - 10.025)$
- 46 f **125**, 897,4–8975.
- 47 J. K u J K. . S. pe , J. Am. Chem. Soc., 1980, 102, 5974-5976.
- p c : . . K , . . S , . Tetrahedron: Asymmetry, 2002, **13**, 815–820. 48 p c) K. . M),
- 49 be f = c + p + 1 Sc f = 1 (be , f = 1 Sc f = 1); f = 1 (be , f = 1 Sc f = 1); f = 1 (be , f = 1 Sc f = 1); f = 1 (be , f = 1); f = 1 (c), f = 1
- J. Chem. Soc., Perkin Trans. 1, 1989, 77–80. 51 J. . K W, Sud Y e C. e e, J. Org. Chem., 2000,
- **65**, 5371–5381.
- $52 \mathbf{D} \cdot \mathbf{C} \cdot \mathbf{H} \quad \text{weight} \quad . \mathbf{h} \cdot \mathbf{h} \quad . \mathbf{h} \quad . \mathbf{h} \cdot \mathbf{h} \quad . \mathbf{h}$ 1991, **47**, 7645–7662.